
www.manaraa.com

Using Program Slicingin Software MaintenanceK. B. GallagherComputer Science DepartmentLoyola College in Maryland4501 N. Charles St.Baltimore, Maryland 21210J. R. LyleComputer Science DepartmentUniversity of Maryland, Baltimore Campus5401 Wilkens AvenueBaltimore, Maryland 21228August, 1991AbstractProgram slicing, introduced by Weiser, is known to help programmers in understanding foreign codeand in debugging. We apply program slicing to the maintenance problem by extending the notion of aprogram slice (that originally required both a variable and line number) to a decomposition slice, one thatcaptures all computation on a given variable; i.e., is independent of line numbers. Using the lattice ofsingle variable decomposition slices, ordered by set inclusion, we demonstrate how to form a slice-baseddecomposition for programs. We are then able to delineate the e�ects of a proposed change by isolatingthose e�ects in a single component of the decomposition. This gives maintainers a straightforwardtechnique for determining those statements and variables that may be modi�ed in a component andthose that may not. Using the decomposition, we provide a set of principles to prohibit changes thatwill interfere with unmodi�ed components. These semantically consistent changes can then be mergedback into the original program in linear time. Moreover, the maintainer can test the changes in thecomponent with the assurance that there are no linkages into other components. Thus, decompositionslicing induces a new software maintenance process model that eliminates the need for regression testing.Index terms: Software Maintenance, Program Slicing, Decomposition Slicing, Software Process Mod-els Software Testing, Software Tools, Impact Analysis
1

www.manaraa.com

1 IntroductionIn \Kill that Code!," [32] Gerald Weinberg alludes to his private list of the world's most expensive programerrors. The top three disasters were caused by a change to exactly one line of code: \each one involvedthe change of a single digit in a previously correct program." The argument goes that since the changewas to only one line, the usual mechanisms for change control could be circumvented. And, of course, theresults were catastrophic. Weinberg o�ers a partial explanation: \unexpected linkages," i.e., the value of themodi�ed variable was used in some other place in the program. The top three of this list of ignominy areattributed to linkage. More recently, in a special section of the March, 1987 issue of IEEE Transactions onSoftware Engineering, Schneidewind [30] notes that one of the reasons that maintenance is di�cult is that itis hard to determine when a code change will a�ect some other piece of code. We present herein a methodfor maintainers to use that addresses this issue.While some may view software maintenance as a less intellectually demanding activity than development,the central premise of this work is that software maintenance is more demanding. The added di�culty is duein large part to the semantic constraints that are placed on the maintainer. These constraints can be looselycharacterized as the attempt to avoid unexpected linkages. Some [4, 14] have addressed this problem byattempting to eliminate these semantic constraints and then providing the maintainer with a tool that willpinpoint potential inconsistencies after changes have been implemented. This makes maintenance appear tobe more like development, since the programmer does not need to worry about linkages: once the change ismade, the tool is invoked and the inconsistencies (if any) are located. One would expect that the tool wouldproceed to resolve these inconsistencies, but it has been shown that this problem is NP-hard [14]. Thus, themaintainer can be presented with a problem that is more di�cult to resolve that the original change.We take the opposite view: present the maintainer with a semantically constrained problem and let himconstruct the solution that implements the change within these constraints. The semantic context withwhich we propose to constrain the maintainer is one that will prohibit linkages into the portions of the codethat the maintainer does not want to change. This approach uncovers potential problems earlier than theaforementioned methods, and, we believe, is worth any inconvenience that may be encountered due to theimposition of the constraints.Our program slicing based techniques give an assessment of the impact of proposed modi�cations, ease theproblems associated with revalidation and reduce the resources required for maintenance activities. Theywork on unstructured programs, so they are usable on older systems. They may be used for white-box,spare-parts and backbone maintenance without regard to whether the maintenance is corrective, adaptive,perfective or preventive.2 BackgroundProgram slicing, introduced by Weiser, [33, 36] is a technique for restricting the behavior of a programto some speci�ed subset of interest. A slice S(v; n) (of program P) on variable v, or set of variables, atstatement n yields the portions of the program that contributed to the value of v just before statement nis executed. S(v; n) is called a slicing criteria. Slices can be computed automatically on source programsby analyzing data
ow and control
ow. A program slice has the added advantage of being an executableprogram. Slicing is done implicitly by programmers while debugging [33, 35]; slices can be combined toisolate sections of code likely to contain program faults and signi�cantly reduce debugging times [23, 24, 25].There has been a
urry of recent activities where slicing plays a signi�cant role. Horwitz, Reps, et al.[15, 16, 28] use slices in integrating programs. Their results are built on the seminal work of Ottenstein andOttenstein [7, 27] combining slicing with the robust representation a�orded by program dependence graphs.Korel and Laski [20, 21, 22] use slices combined with execution traces for program debugging and testing.Choi et al. [6] use slices and traces in debugging parallel programs. Reps and Wang [29] have investigatedtermination conditions for program slices. Hausler [13] has developed a denotational approach to programslicing. Gallagher [8] has improved Lyle's [23] algorithm for slicing in the presence of goto's and developedtechniques for capturing arbitrarily placed output statements. We will not discuss slicing techniques in thispaper and instead refer the interested reader to these works.Since we want to avoid getting bogged down in the details of a particular language, we will identify aprogram with its
owgraph. Each node in the graph will correspond to a single source language statement.1

www.manaraa.com

1 #define YES 12 #define NO 03 main()4 f5 int c, nl, nw, nc, inword ;6 inword = NO ;7 nl = 0;8 nw = 0;9 nc = 0;10 c = getchar();11 while (c != EOF) f12 nc = nc + 1;13 if (c == '\n')14 nl = nl + 1;15 if (c == ' ' || c == '\n' || c == '\t')16 inword = NO;17 else if (inword == NO) f18 inword = YES ;19 nw = nw + 1;20 g21 c = getchar();22 g23 printf("%d \n",nl);24 printf("%d \n",nw);25 printf("%d \n",nc);26 g Figure 1: Program to be SlicedHenceforth, the term statement will mean a node in the
owgraph. Using a common representation schememakes the presentation clear, although it is clear that any tool based on these techniques will need to accountfor the nuances of the particular language. In this paper, we also ignore problems introduced by having deadcode in the source program, and declare that the programs under consideration will not have any dead code.See [8] for slicing based techniques to eliminate dead code.Figures 2-6 illustrate slicing on the program of �gure 1, a bare bones version of the Unix utility wc, wordcount, taken from [19]. The program counts the number of characters, words, and lines in a text �le. It hasbeen slightly modi�ed to illustrate more clearly the slicing principles. The slices of �gures 2-4 are completeprograms that compute a restriction of the speci�cation. The slice on nw (�g. 2) will output the number ofwords in a �le; the slice on nc (�g. 3) will count the number of characters in the input text �le; the slice onnl (�g. 4) will count the number of lines in the �le.3 Using Slices for DecompositionThis section presents a method for using slices to obtain a decomposition of the program. Our objectiveis to use slicing to decompose a program \directly," into two (or more) components. A program slicewill be one of the components. The construction is a two step process. The �rst step is to build, for onevariable, a decomposition slice, which is the union of certain slices taken at certain line numbers, on the givenvariable. Then the other component of the decomposition, called the \complement," will also be obtainedfrom the original program. The complement is constructed in such a way that when certain statements ofthe decomposition slice are removed from the original program, the program that remains is the slice that2

www.manaraa.com

1 #define YES 12 #define NO 03 main()4 f5 int c, nw, inword ;6 inword = NO ;8 nw = 0;10 c = getchar();11 while (c != EOF) f15 if (c == ' ' || c == '\n' || c == '\t')16 inword = NO;17 else if (inword == NO) f18 inword = YES ;19 nw = nw + 1;20 g21 c = getchar();22 g24 printf("%d \n",nw);26 g Figure 2: Slice on (nw,26): Word Counter3 main()4 f5 int c, nc ;9 nc = 0;10 c = getchar();11 while (c != EOF) f12 nc = nc + 1;21 c = getchar();22 g25 printf("%d \n",nc);26 g Figure 3: Slice on (nc,26): Character Counter3

www.manaraa.com

3 main()4 f5 int c, nl, ;7 nl = 0;10 c = getchar();11 while (c != EOF) f13 if (c == '\n')14 nl = nl + 1;21 c = getchar();22 g23 printf("%d \n",nl);26 g Figure 4: Slice on (nl,26): Line Counter1 #define YES 12 #define NO 03 main()4 f5 int c, inword ;6 inword = NO ;10 c = getchar();11 while (c != EOF) f15 if (c == ' ' || c == '\n' || c == '\t')16 inword = NO;17 else if (inword == NO) f18 inword = YES ;20 g21 c = getchar();22 g26 g Figure 5: Slice on (inword,26)3 main()4 f5 int c ;10 c = getchar();11 while (c != EOF) f21 c = getchar();22 g26 g Figure 6: Slice on (�c,26)4

www.manaraa.com

1 input a2 input b3 t = a + b4 print t5 t = a - b6 print t Figure 7: Requires a Decomposition Slicecorresponds to the complement (in a sense to be de�ned) of the given criteria, with respect to the variablesde�ned in the program. Thus the complement is also a program slice.The decomposition slice is used to guide the removal of statements in a systematic fashion to constructthe complement. It is insu�cient to merely remove the slice statements from the original program. Sincewe require that a slice be executable, there will be certain crucial statements that are necessary in both theslice and its complement. For example, if we start with the slice of �gure 2 and remove all its statementsfrom the original program, the resulting object will not even compile!We use this decomposition to break the program into manageable pieces and automatically assist themaintainer in guaranteeing that there are no ripple e�ects induced by modi�cations in a component. We usethe complement to provide a semantic context for modi�cations in the decomposition slice; the complementmust remain �xed after any change.The decomposition ideas presented in this section are independent of a particular slicing method. Once aslice is obtained, by any slicing algorithm, a program decomposition may be computed. Clearly, the qualityof the decomposition will be a�ected by the quality of the slice, in the sense that more re�ned slices give a�ner granularity and also deliver more semantic information to the maintainer.A program slice is dependent on a variable and a statement number. A decomposition slice does notdepend on statement numbers. The motivation for this concept is easily explained using the example of�gure 7. The slice S(t; 4) is statements 1, 2, 3, 4, while the slice S(t; 6) is statements 1, 2, 5, 6. Slicing atstatement last (in this case 6) of a program is insu�cient to get all computations involving the slice variable,t. A decomposition slice captures all relevant computations involving a given variable.To construct a decomposition slice, we borrow the concept of critical instructions from an algorithm fordead code elimination as presented in Kennedy [18]. A brief reprise follows. The usual method for deadcode elimination is to �rst locate all instructions that are useful in some sense. These are declared to be thecritical instructions. Typically, dead code elimination algorithms start by marking output instructions tobe critical. Then the use-de�nition [18] chains are traced to mark the instructions that impact the outputstatements. Any code that is left unmarked is useless to the given computation.De�nition 1 Let Output(P; v) be the set of statements in program P that output variable v, let last be thelast statement of P , and let N = Output(P,v) [flastg. The statements in [n2N S(v) form the decompositionslice on v, denoted S(v).The decomposition slice is the union of a collection of slices, which is still a program slice [36]. We includestatement last so that a variable that is not output may still be used as a decomposition criteria; this willalso capture any de�ning computation on the decomposition variable after the last statement that displaysits value. To successfully take a slice at statement last, we invoke one of the crucial di�erences between theslicing de�nitions of Reps, with those of Weiser, Lyle and this work. A Reps slice must be taken at a point,p, with respect to a variable that is de�ned or referenced at p. Weiser's slices can be taken at an arbitraryvariable at an arbitrary line number. This di�erence prohibits Reps' slicing techniques from being applicablein the current context, since we want to slice on every variable in the program at the last statement.We now begin to examine the relationship between decomposition slices. Once we have this in place, wecan use the decomposition slices to perform the actual decompositions. To determine the relationships, wetake the decomposition slice for each variable in the program and form a lattice of these decomposition slices,5

www.manaraa.com

ordered by set inclusion. It is easier to gain a clear understanding of the relationship between decompositionslices if we regard them without output statements. This may seem unusual in light of the above de�nition,since we used output statements in obtaining relevant computations. We view output statements as windowsinto the current state of computation, which do not contribute to the realization of the state. This coincideswith the informal de�nition of a slice: the statements that yield the portions of the program that contributedto the value of v just before statement n is executed. Assuming that output statements do not contribute tothe value of a variable precludes from our discussion output statements (and therefore programs) in whichthe output values are reused, as is the case with random access �les or output to �les that are later reopenedfor input. Moreover, we are describing a decomposition technique that is not dependent on any particularslicing technique; we have no way of knowing whether or not the slicing technique includes output statementsor not. We say a slice is output-restricted if all its output statements are removed.De�nition 2 Output restricted decomposition slices S(v) and S(w) are independent ifS(v) \ S(w) = ;.It would be a peculiar program that had independent decomposition slices; they would share neithercontrol
ow or data
ow. In e�ect, there would be two programs with non-intersecting computations ondisjoint domains that were merged together. The lattice would have two components. In Ott's slice metricterminology, [26] independence corresponds to low (coincidental or temporal) cohesion.Output-restricted decomposition slices that are not independent are said to be (weakly) dependent. Sub-sequently, when we speak of independence and dependence of slices it will always be in the context ofoutput-restricted decomposition slices.De�nition 3 Let S(v) and S(w) be output-restricted decomposition slices, w 6= v, and let S(v) � S(w). S(v)is said to be strongly dependent on S(w).Thus output-restricted decomposition slices strongly dependent on independent slices are independent.The de�nitions of independence and dependence presented herein are themselves dependent on the notionof a slice.The analogous de�nitions are used by Bergeretti and Carr�e [3] to de�ne slices. In Ott's metric terminology,[26] strong dependence corresponds to high (sequential or functional) cohesion.Strong dependence of decomposition slices is a binary relation; in most cases, however, we will not alwaysneed an explicit reference to the containing slice. Henceforth, we will write \S(v) is strongly dependent" asa shorthand for \S(v) is strongly dependent on some other slice S(w)" when the context permits it.De�nition 4 An output-restricted slice S(v) that is not strongly dependent on any other slice is said to bemaximal.Maximal decomposition slices are at the \ends" of the lattice. This de�nition gives the motivation foroutput restriction; we do not want to be concerned with the possible e�ects of output statements on themaximality of slices or decomposition slices. This can be observed by considering the decomposition sliceson nw and inword, of �gures 2 and 5. If we regarded output statements in de�ning maximal, we could forcethe slice on inword to be maximal by the addition of a print statement referencing inword along with theothers at the end of the program. Such a statement would not be collected into the slice on nw. Since thisadded statement is not in any other slice, the slice on inword would be maximal and it should not be.Figure 8 gives the lattice we desire. S(nc), S(nl) and S(nw) are the maximal decomposition slices.S(inword) is strongly dependent on S(nw); S(c) is strongly dependent on all the other decompositionslices. The decomposition slices on S(nw), S(nc), and S(nl), �gures 2 - 4 they are weakly dependent andmaximal, when the output statements are removed. There are no independent decomposition slices in theexample. Recall that independent decomposition slices cannot share any control
ow: the surroundingcontrol statements would make them dependent.We now begin to classify the individual statements in decomposition slices.De�nition 5 Let S(v) and S(w) be output-restricted decomposition slices of program P . Statements inS(v) \ S(w) are called slice dependent statements. 6

www.manaraa.com

S(nc) S(nl) S(nw)"S(inword)- " %S(c)Figure 8: Lattice of Decomposition Slices.Slice independent statements are statements that are not slice dependent. We will refer to slice dependentstatements and slice independent statements as dependent statements and independent statements. Depen-dent statements are those contained in decomposition slices that are interior points of the lattice; independentstatements are those in a maximal decomposition slice that are not in the union of the decomposition slicesthat are properly contained in the maximal slice. The terms arise from the fact that two or more slicesdepend on the computation performed by dependent statements. Independent statements do not contributeto the computation of any other slice. When modifying a program, dependent statements cannot be changed,or the e�ect will ripple out of the focus of interest.For example, statement 12 of the slice on nc (�g. 3) is a slice independent statement with respect toany other decomposition slice. Statements 13 and 14 of the slice on nl (�g. 4) are also slice independentstatements with respect to any other decomposition slice. The decomposition slice on c (�g. 6) is stronglydependent on all the other slices, thus all its statements are slice dependent statements with respect to anyother decomposition slice. Statements 6 and 15-20 of the slice on nw (�g. 2) are slice independent statementswith respect to decomposition slices S(nc), S(nl), and S(c); only statement 19 is slice independent whencompared with S(inword). Statements 6, 15-18 and 20 of the decomposition slice on inword (�g. 5) areslice independent statements with respect to decomposition slices S(nc), S(nl), and S(c); no statements areslice independent when compared with S(nw).We have a relationship between maximal slices and independent statements. This proposition permitsus to apply the terms \(slice) independent statement" and \(slice) dependent statement" in a sensible wayto a particular statement in a given maximal decomposition slice without reference to the binary relationbetween decomposition slices that is required in de�nition 5.Proposition 1 Let1. Varset(P) be the set of variables in program P.2. S(v) be an output-restricted decomposition slice of P.3. Let M = f m 2 Varset(P) j S(m) is maximalg4. Let U = M - f v gThe statements in S(v) � [u2U S(u) are independent.Proof Sketch:Let U = fu1; . . . ; umg.S(v) � [u2U S(u) = S(v) � S(u1) . . .� S(um).End.There is a relationship between the maximal slices and the program. (Recall that dead code has beenexcluded from our discussions.)Proposition 2 Let M = f m 2 Varset(P) j S(m) is maximalg. Then [m2M S(m) = P .7

www.manaraa.com

Proof Sketch:Since S(m) 2 P , [m2MS(m) � P . If P 6� [m2MS(m), then the statements in P that are not in[m2MS(m) are dead code.End.Maximal slices capture the computation performed by the program. Maximal slices and their respectiveindependent statements also are related:Proposition 3 An output-restricted decomposition slice is maximal i� it has at least one independent state-ment.Proof Sketch:Suppose S(v) is maximal. By de�nition S(v) has at least one statement that no other slice has. Thisstatement is an independent statement.Now suppose that S(v) has an independent statement, s. Then s is not in any other slice, and the slicethat contains s is maximal.End.Conversely, a slice with no independent statements is strongly dependent.We also have another characterization of strongly dependent slices.Proposition 4 Let1. Varset(P) be the set of variables in program P.2. S(v) be an output-restricted decomposition slice of P.3. Let D = f w 2 Varset(P) j S(v) is strongly dependent on S(w)g4. Let M = f m 2 Varset(P) j S(m) is maximalg5. Let U = M - f v gAn output-restricted decomposition slice S(v) is strongly dependent (on some S(d)) i� [u2U S(u) = P .Proof Sketch:Suppose S(v) is strongly dependent. We need to show that D has a maximal slice. Partially order D byset inclusion. Let d be one of the maximal elements of D. The element d is maximal; if it is not, then it isproperly contained in another slice d1, which is in D and contains S(v). Then d 2 M, d 6= v, and S(v)makes no contribution to the union.Suppose [u2U S(u) = P . Since U � M, S(v) makes no contribution to the union. By proposition 3, S(v)is strongly dependent.End.We are now in a position to state the decomposition principles. Given a maximal output-restricteddecomposition slice S(v) of program P, delete the independent and output statements of S from P. Wewill denote this programP(v) and call it the complement of decomposition slice S(v) (with respect to P).Henceforth, when we speak of complements, it will always be in the context of decomposition slices. Thedecomposition slice is the subset of the program that computes a subset of the speci�cation; the complementcomputes the rest of the speci�cation.Figures 9 - 11 give the complements of the slices on nw, nc and nl of �gures 2 - 4. Using proposition 4we obtain that the complement of both the slice on inword and the slice on c is the entire program.8

www.manaraa.com

3 main()4 f5 int c, nl, nw, nc, inword ;7 nl = 0;9 nc = 0;10 c = getchar();11 while (c != EOF) f12 nc = nc + 1;13 if (c == '\n')14 nl = nl + 1;21 c = getchar();22 g23 printf("%d \n",nl);25 printf("%d \n",nc);26 gFigure 9: P(nw). Complement of slice on nw: computes line count and character countThis yields the approximation of a direct sum decomposition of a program that preserves the computa-tional integrity of the constituent parts. This also indicates that the only useful decompositions are donewith maximal decomposition slices. A complement, P, of a maximal slice can be further decomposed, sothe decomposition may be continued until all slices with independent statements (i.e. the maximal ones) areobtained.In practice, a maintainer may �nd a strongly dependent slice as a starting point for a proposed change.Our method will permit such changes. Such a change may be viewed as properly extending the domain ofthe partial function that the program computes, while preserving the partial function on its original domain.4 Application to Modi�cation and TestingStatement independence can be used to build a set of guidelines for software modi�cation. To do this, weneed to make one more set of de�nitions regarding variables that appear in independent and dependentstatements. With these de�nitions we give a set of rules that maintainers must obey in order to makemodi�cations without ripple e�ects and unexpected linkages. When these rules are obeyed, we have analgorithm to merge the modi�ed slice back into the complement and e�ect a change. The driving motivationfor the following development is: \What restrictions must be placed on modi�cations in a decompositionslice so that the complement remains intact?"De�nition 6 A variable that is the target of a dependent assignment statement is called a dependent vari-able. Alternatively, and equivalently, if all assignments to a variable are in independent statements, then thevariable is called an independent variable.An assignment statement can be an independent statement while its target is not an independent variable.In the program of �gure 12 the two maximal decomposition slices are S(a) and S(e) (�gures 13 and 14). SliceS(b) (�gure 15) is strongly dependent on S(a) and S(f) (�gure 16) is strongly dependent on S(b) and S(a).S(d) and S(c) (not shown) are strongly dependent on both maximal slices. In S(a), statements 8, 10, and 11are independent, by the proposition. But variables a and b are targets of assignment statements 6 and 5,respectively. So, in the decomposition slice S(a), only variable f is an independent variable.9

www.manaraa.com

1 #define YES 12 #define NO 03 main()4 f5 int c, nl, nw, nc, inword ;6 inword = NO ;7 nl = 0;8 nw = 0;9 nc = 0;10 c = getchar();11 while (c != EOF) f12 nc = nc + 1;13 if (c == '\n')14 nl = nl + 1;15 if (c == ' ' || c == '\n' || c == '\t')16 inword = NO;17 else if (inword == NO) f18 inword = YES ;19 nw = nw + 1;20 g21 c = getchar();22 g23 printf("%d \n",nl);24 printf("%d \n",nw);26 gFigure 10: P(nc). Complement of slice on nc: computes word count and line count
10

www.manaraa.com

1 #define YES 12 #define NO 03 main()4 f5 int c, nl, nw, nc, inword ;6 inword = NO ;8 nw = 0;9 nc = 0;10 c = getchar();11 while (c != EOF) f12 nc = nc + 1;15 if (c == ' ' || c == '\n' || c == '\t')16 inword = NO;17 else if (inword == NO) f18 inword = YES ;19 nw = nw + 1;20 g21 c = getchar();22 g24 printf("%d \n",nw);25 printf("%d \n",nc);26 gFigure 11: P(nl). Complement of slice on nl: computes character count and word count1 main()2 f3 int a, b, c, d, e, f;4 c = 4;5 b = c;6 a = b + c;7 d = a + c;8 f = d + b;9 e = d + 8;10 b = 30 + f;11 a = b + c;12 g Figure 12: Dependent Variable Sample Program11

www.manaraa.com

1 main()2 f3 int a, b, c, d, e, f;4 c = 4;5 b = c;6 a = b + c;7 d = a + c;8 f = d + b;10 b = 30 + f;11 a = b + c;12 g Figure 13: Slice on a
1 main()2 f3 int a, b, c, d, e, f;4 c = 4;5 b = c;6 a = b + c;7 d = a + c;9 e = d + 8;12 g Figure 14: Slice on e12

www.manaraa.com

1 main()2 f3 int a, b, c, d, e, f;4 c = 4;5 b = c;6 a = b + c;7 d = a + c;8 f = d + b;10 b = 30 + f;12 g Figure 15: Slice on b1 main()2 f3 int a, b, c, d, e, f;4 c = 4;5 b = c;6 a = b + c;7 d = a + c;8 f = d + b;12 g Figure 16: Slice on fA similar argument applies for independent control
ow statements that reference dependent variables. Adependent variable in an independent statement corresponds to the situation where the variable in questionis required for the compilation of the complement, but the statement in question does not contribute to thecomplement. If a variable is referenced in a dependent statement, it is necessary to the complement andcannot be independent.If a decomposing on a single variable yields a strongly dependent slice, we are able to construct a slicewhere the original slice variable is an independent variable.Proposition 5 Let1. Varset(P) be the set of variables in program P.2. S(v) be a strongly dependent output restricted decomposition slice of P.3. Let D = f w 2 Varset(P) j S(v) is strongly dependent on S(w)g4. Let M = f m 2 Varset(P) j S(m) is maximalg5. Let U = D \ M6. Let T = [u2U S(u)The variable v is an independent variable in T .In other words, when S(v) is a strongly dependent slice and T is the union of all the maximal slices uponwhich S(v) is strongly dependent, then v is an independent variable in T .13

www.manaraa.com

Proof Sketch:We show that the complement of T , P - T has no references to v: if variable v is in the complement of T ,then there is a maximal slice in the complement upon which S(v) is strongly dependent. This contradictsthe hypotheses, so the complement if T has no references to v and the variable v is independent in T .End.This can be interpreted as the variable version of proposition 1, that refers to statements.This has not addressed the problem that is presented when the decomposition slice on variable is maximal,but the variable itself remains dependent. This is the situation that occurred in the example at the beginningof the chapter; the slice on variable a (�gure 13) is maximal but the variable is dependent. The solution isstraightforward: we construct the slice that is the union of all slices in which the the variable is dependent.Proposition 6 Let1. Varset(P) be the set of variables in program P.2. S(v) be an output restricted decomposition slice of P.3. Let E = f w 2 Varset(P) j v is a dependent variable in S(w)g4. Let T = [e2E S(e)We have two cases:1. E = ;, (and thus T is empty also) in which case v is an independent variable.2. E 6= ;, so T is not empty and the variable v is an independent variable in T .Proof Sketch:Case 1: E = ;S(v) contains all references to v. In particular, S(v) contains all assignments to v. So v is an independentvariable in S(v). End Case 1Case 2: E 6= ;T contains all references to v. In particular, T contains all assignments to v. So v is an independentvariable in T . End Case 2End.This proposition is about variables.4.1 Modifying Decomposition SlicesWe are now in a position to answer the question posed at the beginning of this section. We present therestrictions as a collection of rules with justi�cations.Modi�cations take three forms: additions, deletions and changes. A change may be viewed as a deletionfollowed by an addition. We will use this second approach, and determine only those statements in adecomposition slice that can be deleted and the forms of statements that can be added. Again, we must relyon the fact that the union of decomposition slices is a slice, since the complementary criteria will usuallyinvolve more than one maximal variable. We also assume that the maintainer has kept the modi�ed programcompilable and has obtained the decomposition slice of the portion of the software that needs to be changed.(Locating the code may be a highly nontrivial activity; for the sake of the current discussion, we assume itscompletion.)Since independent statements do not a�ect data
ow or control
ow in the complement, we have:Rule 1 Independent statements may be deleted from a decomposition slice.Reason:Independent statements do not a�ect the computations of the complement. Deleting an independentstatement from a slice will have no impact on the complement.End. 14

www.manaraa.com

This result applies to control
ow statements and assignment statements. The statement may be deletedeven if it is an assignment statement that targets a dependent variable, or a control statement that referencesa dependent variable. The point to keep in mind is that if the statement is independent it does not a�ectthe complement. If an independent statement is deleted, there will certainly be an e�ect in the slice. Butthe purpose of this methodology is to keep the complement intact.There are a number of situations to consider when statements are to be added. We progress from simpleto complex. Also note that for additions, new variables may be introduced, as long as the variable namedoes not clash with any name in the complement. In this instance the new variable is independent in thedecomposition slice. In the following, independent variable means an independent variable or a new variable.Rule 2 Assignment statements that target independent variables may be added anywhere in a decompositionslice.Reason :Independent variables are unknown to the complement. Thus changes to them cannot a�ect the compu-tations of the complement.End.This type of change is permissible even if the changed value
ows into a dependent variable. In �gure 13,changes are permitted to the assignment statement a line 8 , which targets f. A change here would propagateinto the values of dependent variables a and b at lines 10 and 11. The maintainer would then be responsiblefor the changes that would occur to these variables. If lines 10 and 11 were dependent, (i.e., contained inanother decomposition slice), line 8 would also be contained in this slice, and variable f would be dependent.Adding control
ow statements requires a little more care. This is required because control statementshave two parts: the logical expression, that determines the
ow of control, and the actions taken for eachvalue of the expression. (We assume no side e�ects in the evaluation of logical expressions.) We discuss onlythe addition of if-then-else and while statements, since all other language constructs can be realized bythem [5].Rule 3 Logical expressions (and output statements) may be added anywhere in a decomposition slice.Reason :We can inspect the state of the computation anywhere. Evaluation of logical expressions (or the inclusionof an output statement) will not even a�ect the computation of the slice. Thus the complement remainsintact.End.We must guarantee that the statements that are controlled by newly added control
ow do not interferewith the complement.Rule 4 New control statements that surround (i.e. control) any dependent statement will cause the comple-ment to change.Reason :Suppose newly added code controls a dependent statement.Let C be the criteria that yield the complement. When using this criteria on the modi�ed program,the newly added control code will be included in this complementary slice. This is due to the fact that thedependent statements are in both the slice and the complement. Thus any control statements that controldependent statements will also be in the slice and the complement.End.By making such a change, we have violated out principle that the complement remain �xed. Thus newcontrol statements may not surround any dependent statement.This short list is necessary and su�cient to keep the slice complement intact. This also has an impacton testing the change that will be discussed later.Changes may be required to computations involving a dependent variable, v, in the extracted slice. Themaintainer can choose one of the following two approaches:1. Use the techniques of the previous section to extend the slice so that v is independent in the slice.15

www.manaraa.com

2. Add a new local variable (to the slice), copy the value to the new variable, and manipulate the newname only. Of course, the new name must not clash with any name in the complement. This techniquemay also be used if the slice has no independent statements, i.e., it is strongly dependent.4.2 Merging the Modi�cations into the ComplementMerging the modi�ed slice back into the complement is straightforward. A key to understanding the mergeoperation comes the the observation that through the technique, the maintainer is editing the entire program.The method gives a view of the program with the unneeded statements deleted and with the dependentstatements restricted from modi�cation. The slice gives smaller piece of code for the maintainer to focuson, while the rules of the previous subsection provide the means by which the deleted and restricted partscannot be changed accidentally.We now present the merge algorithm.1. Order the statements in the original program. (In the following examples, we have one statement perline so that the ordering is merely the line numbering.) A program slice and its complement can nowbe identi�ed with the subsequence of statement numbers from original program. We call the sequencenumbering from the slice, the slice sequence and the numbering of the complement the complementsequence. We now view the editing process as the addition and deletion of the associated sequencenumbers.2. For deleted statements, delete the sequence number from the slice sequence. Observe that since onlyindependent statements are deleted, this number is not in the complement sequence.3. For statements inserted into the slice a new sequence number needs to be generated. Let P be thesequence number of the statement preceding the statement to be inserted. Let M be the least value inthe slice sequence greater than P . Let F = min(int(P +1);M). Insert the new statement at sequencenumber (F + P)=2. (Although this works in principle, in practice, more care needs to be taken in thegeneration of the insertion sequence numbers to avoid
oating point errors after 10 inserts.)4. The merged program is obtained by merging the modi�ed slice sequence values (i.e. statements) intothe complement sequence.Thus, the unchanged dependent statements are used to guide the reconstruction of the modi�ed program.The placement of the changed statements within a given control
ow is arbitrary. Again, this becomes clearerwhen the editing process is viewed as modi�cation to the entire program. The following example will helpclarify this.4.3 Testing the ChangeSince the maintainer must restrict all changes to independent or newly created variables testing is reducedto testing the modi�ed slice. Thus the need for regression testing in the complement is eliminated. Thereare two alternative approaches to verifying that only the change needs testing. The �rst is to slice on theoriginal criteria plus any new variables minus any eliminated variables. and compare its complement withthe complement of the original: they should match exactly. The second approach is to preserve the criteriathat produced the original complement. Slicing out on this must produce the modi�ed slice exactly.An axiomatic consideration illumines this idea. The slice and its complement perform a subset of thecomputation; where the computations meet are the dependencies. Modifying code in the independent partof the slice, leaves the independent part of the complement as an invariant of the slice (and vice versa).If the required change is \merely" a module replacement, the preceding techniques are still applicable.The slice will provide a harness for the replaced module. A complete independent program supporting themodule is obtained. One of the principle bene�ts of slicing is highlighted in this context: any side e�ects ofthe module to be replaced will also be in the slice. Thus the full impact of change is brought to the attentionof the modi�er.As an example, we make some changes to S(nw), the slice on nw, the word counter of �gure 2. Thechanged slice is shown in �gure 17. The original program determined a word to be any string of \non-white" symbols terminated by a \white" symbol (space, tab, or newline). The modi�cation changes this16

www.manaraa.com

3 main()4 f* int ch;5 int c, nw ;* ch = 0;8 nw = 0;10 c = getchar();11 while (c != EOF) f* if (isspace(c) && isalpha(ch))* nw = nw + 1;* ch = c ;21 c = getchar();22 g24 printf("%d \n",nw);26 g Figure 17: Modi�ed slice on nw, the word counterto requirement to be alphabetical characters terminated by white space. (The example is illustrating achange, not advocating it.) Note the changes. We have deleted the independent \variables" YES and NO;added a new, totally independent variable ch, and revamped the independent statements. The additionof the C macros isspace and isalpha is safe, since the results are only referenced. We test this programindependently of the complement.Figure 18 shows the reconstructed, modi�ed program. Taking the decomposition slice on nw generatesthe program of �gure 17. Its complement is already given in �gure 9. The starred (*) statements indicatewhere the new statements would be placed using the line number generation technique above.5 A New Software Maintenance Process ModelThe usual Software Maintenance Process Model is depicted in �gure 19. A request for change arrives. Itmay be adaptive, perfective, corrective, or preventive. In making the change, we wish to minimize defects,e�ort, and cost, while maximizing customer satisfaction [12]. The software is changed, subject to pendingpriorities. The change is composed of two parts. Understanding the code, which may require documentation,code reading, and execution. Then the program is modi�ed. The maintainer must �rst design the change(which may be subject to peer review) then alter the code itself, while trying to minimize side e�ects. Thechange is then validated. The altered code itself is veri�ed to assure conformance with the speci�cation. Thenthe new code is integrated with the existing system to insure conformance with the system speci�cations.This task involves regression testing.The new model is depicted in �gure 20. The software is changed, subject to pending priorities. Thechange is composed of two parts. Understanding the code will now require documentation, code reading,execution, and the use of decomposition slices. The decomposition slices may be read, and executed (adecided advantage of having executable program slices). The code is then modi�ed, subject to the stricturesoutlined. Using those guidelines, no side e�ects or unintended linkages can be induced in the code, even byaccident. This lifts a substantial burden from the maintainer.The change is tested in the decomposition slice. Since the change cannot ripple out into other modules,regression testing is unnecessary. The maintainer need only verify that change is correct. After applying themerge algorithm, the change (of the code) is complete.17

www.manaraa.com

3 main()4 f* int ch;5 int c, nl, nw, nc ;* ch = 0;7 nl = 0;8 nw = 0;9 nc = 0;10 c = getchar();11 while (c != EOF) f* if (isspace(c) && isalpha(ch))* nw = nw + 1;* ch = c ;12 nc = nc + 1;13 if (c == '\n')14 nl = nl + 1;21 c = getchar();22 g23 printf("%d \n",nl);24 printf("%d \n",nw);25 printf("%d \n",nc);26 g Figure 18: Modi�ed Program6 Future DirectionsThe underlying method and the tool based on it [9] needs to be empirically evaluated. This is underwayusing the Goal-Question-Metric paradigm of Basili, et al [2]. Naturally, we are also addressing questions ofscale, to determine if existing software systems decompose su�ciently via these techniques, in order to e�ecta technology transfer. We are also evaluating decomposition slices as candidates for components in a reuselibrary.Although they seem to do well in practice, the slicing algorithms have relatively bad worst case runningtimes, O(n e log(e)), where n is the number of variables and e is the number of edges in the
owgragh. Toobtain all the slices, this running time becomes O(n2 e log(e)). These worst case times would seem to makean interactive slicer for large (i.e., real) programs impractical. This di�culty can be assuaged by making thedata
ow analysis one component of the deliverable products that are handed o� from the development teamto the maintenance team. An interactive tool could then be built using these products. Then as changes aremade by the maintainers the data
ow data can be updated, using the incremental techniques of Keables[17].Interprocedural slices can be attacked using the techniques in Weiser [36] and Barth [1]. The interproce-dural slicing algorithms of Horwitz, et al. [16] cannot be used since they require that the slice be taken at apoint where the slice variable id defed or refed; we require that all slices be taken at the last statement ofthe program. For separate compilation, worst case assumption must be made about the external variables,if the source is not available. If the source is available, one proceeds as with procedures.Berzins [4] has attacked the problem of software merges for extensions of programs. To quote him:An extension extends the domain of the partial function without altering any of the initiallyde�ned values, while a modi�cation rede�nes values that were de�ned initially.We have addressed the modi�cation problem by �rst restricting the the domain of the partial function tothe slice complement, modifying the function on the values de�ned by the independent variables in the slice,18

www.manaraa.com

Request
for

Change

Change
Software

Design
Change

Alter
Code

Test
Change

perfective
corrective
preventive

minimize effort
minimize cost
maximize satisfaction

documentation
code reading
test runs

minimize side effects

regression
testing

pending
priorities

Integrate

Revalidate

Figure 19: A Software Maintenance Process Model19

www.manaraa.com

Request
for

Change

Change
Software

Design
Change

Alter
Component

Test
Change

Merge

adaptive
perfective
corrective
preventive

minimize defects
minimize effort
minimize cost
maximize satisfaction

code reading
test runs
decomposition slicing

no side effects

no regression
testing

pending
priorities

Figure 20: A New Software Maintenance Process Model20

www.manaraa.com

then merging these two disjoint domains.Horwitz, et al. [15] have addressed the modi�cation problem. They start with a base program and twomodi�cations it, A and B:Whenever the changes made to base to create A and B do not \interfere" (in a sense de�nedin the paper), the algorithm produces a program M that integrates A and B. The algorithm ispredicated on the assumption that di�erences in the behavior of the variant programs from thatof base, rather than the di�erences in text, are signi�cant and must be preserved in M.Horwitz, et al. do not restrict the changes that can be made to base; thus their algorithm produces anapproximation to the undecidable problem of determining whether or not the behaviors interfere. We haveside-stepped this unsolvable problem by constraining the modi�cations that are made. Our technique ismore akin to the limits placed on software maintainers. Changes must be done in a context: independenceand dependence provides the context. It is interesting to note, however, that their work uses program slicingto determine potential interferences in the merge.They do note that program variants, as they name them, are easily embedded in change control system,such as RCS [31]. Moreover, the direct sum nature of the components can be exploited to build relatedfamilies of software. That is, components can be \summed" as long as their dependent code sections matchexactly and there is no intersection of the independent domains. We also follow this approach for componentconstruction.Weiser [34] discusses some slice-based metrics. Overlap is a measure of how many statements in a sliceare found only in that slice, measured as a mean ratio of non-unique to unique statements in each slice.Parallelism is the number of slices which have few statements in common, computed as number of sliceswhich have pairwise overlap below a certain threshold. Tightness is the number of statements in every slice,expressed as a ratio over program length. Programs with high overlap and parallelism, but with low tightnesswould decompose nicely: the lattice would not get too deep or too tangled.We have shown how a data
ow technique, program slicing, can be used to form a decomposition forsoftware systems. The decomposition yields a method for maintainers to use. The maintainer is able tomodify existing code cleanly, in the sense that the changes can be assured to be completely contained in themodules under consideration and that no unseen linkages with the modi�ed code is infecting other modules.

21

www.manaraa.com

References[1] J. M. Barth. A practical interprocedural data
ow analysis algorithm. Communications of the Associa-tion for Computing Machinery, 21(9):724{726, September 1978.[2] V. Basili, R. Selby, and D. Hutchens. Experimentation in software engineering. IEEE Transactions onSoftware Engineering, 12(7):352{357, July 1984.[3] J-F. Bergeretti and B. Carr�e. Information-
ow and data-
ow analysis of while-programs. ACM Trans-actions on Programming Languages and Systems, 7(1):37{61, January 1985.[4] V. Berzins. On merging software extensions. Acta Informatica, 23:607{619, 1985.[5] C. Bohm and G. Jacopini. Flow diagrams and languages with only two formation rules. Communicationsof the Association for Computing Machinery, 9(5):366{371, May 1966.[6] J-D. Choi, B. Miller, and P. Netzer. Techniques for debugging parallel programs with
owback analysis.Technical Report 786, University of Wisconsin - Madison, August 1988.[7] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in optimization.ACM Transactions on Programming Languages and Systems, 9(3):319{349, July 1987.[8] K. B. Gallagher. Using Program Slicing in Software Maintenance. PhD thesis, University of Maryland,Baltimore, Maryland, December 1989.[9] K. B. Gallagher. Surgeon's assistant limits side e�ects. IEEE Software, May 1990.[10] K. B. Gallagher and J. R. Lyle. Using program decomposition to guide modi�cations. In Conferenceon Software Maintenance { 1988, pages 265{268, October 1988.[11] K. B. Gallagher and J. R. Lyle. A program decomposition scheme with applications to software mod-i�cation and testing. In Proceedings of the 22nd Hawaii International Conference on System Sciences,pages 479{485, January 1989. Volume II, Software Track.[12] R. Grady. Measuring and managing software maintenance. IEEE Software, 4(9), September 1987.[13] P. Hausler. Denotational program slicing. In Proceedings of the 22nd Hawaii International Conferenceon System Sciences, pages 486{494, January 1989. Volume II, Software Track.[14] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs. In Proceedings ofthe SIGPLAN 88 Symposium on the Principles of Programming Languages, January 1988.[15] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs. ACM Transactionson Programming Languages and Systems, 11(3):345{387, July 1989.[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM Transac-tions on Programming Languages and Systems, 12(1):35{46, January 1990.[17] J. Keables, K. Robertson, and A. von Mayrhauser. Data
ow analysis and its application to softwaremaintenance. In Conference on Software Maintenance { 1988, pages 335{347, October 1988.[18] K. Kennedy. A survey of data
ow analysis techniques. In Steven S. Muchnick and Neil D. Jones,editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cli�s, New Jersey,1981.[19] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall, Englewood Cli�s, NewJersey, 1978.[20] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters, 29(3):155{163,October1988. 22

www.manaraa.com

[21] B. Korel and J. Laski. STAD - A system for testing and debugging: User perspective. In Proceedingsof the Second Workshop on Software Testing, Veri�cation and Analysis, pages 13{20, Ban�, Alberta,Canada, July 1988.[22] J. Laski. Data
ow testing in stad. The Journal of Systems and Software, 1989.[23] J. R. Lyle. Evaluating Variations of Program Slicing for Debugging. PhD thesis, University of Maryland,College Park, Maryland, December 1984.[24] J. R. Lyle and M. D. Weiser. Experiments on slicing-based debugging aids. In Elliot Soloway andSitharama Iyengar, editors, Empirical Studies of Programmers. Ablex Publishing Corporation, Norwood,New Jersey, 1986.[25] J. R. Lyle and M. D. Weiser. Automatic program bug location by program slicing. In Proceeding of theSecond International Conference on Computers and Applications, pages 877{882, Peking, China, June1987.[26] L. Ott and J. Thuss. The relationship between slices and module cohesion. In International Conferenceon Software Engineering, May 1989.[27] K. Ottenstein and L. Ottenstein. The program dependence graph in software development environ-ments. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on PracticalSoftware Development Environments, pages 177{184, May 1984. L. Ottenstein is now known as L. Ott.[28] T. Reps and S. Horwitz. Semantics-based program integration. In Proceedings of the Second EuropeanSymposium on Programming (ESOP '88), pages 133{145, Nancy, France, March 1988.[29] T. Reps and W. Yang. The semantics of program slicing. Technical Report 777, University of Wisconsin- Madison, June 1988.[30] N. Schneidewind. The state of software maintenance. IEEE Transactions on Software Engineering,13(3):303{310, March 1987.[31] W. Tichy. RCS: A system for version control. Software - Practice & Experience, 15(7):637{654, July1985.[32] G. Weinberg. Kill that code! Infosystems, pages 48{49, August 1983.[33] M. Weiser. Program Slicing: Formal, Psychological and Practical Investigations of an Automatic Pro-gram Abstraction Method. PhD thesis, The University of Michigan, Ann Arbor , Michigan, 1979.[34] M.Weiser. Program slicing. In Proceeding of the Fifth International Conference on Software Engineering,pages 439{449, May 1981.[35] M. Weiser. Programmers use slices when debugging. CACM, 25(7):446{452, July 1982.[36] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352{357, July 1984.

